This talk will present an overview of recent progress towards a solution of one of the grand-challenges of modern science: understanding the properties of interacting electrons in molecules and solids. After an introduction to the physics I will argue our theoretical understanding of a basic model system, the two dimensional Hubbard model, has reached the level that we can say with confidence that its superconducting properties capture key aspect of the high-Tc superconductivity in copper-oxide materials. I will then summarize the current status of our extension of the methods to fully physically realistic systems, emphasizing the areas of theoretical uncertainty and the prospects for resolution.