Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.06.28.533479v1?rss=1
Authors: Akshay, A., Katoch, M., Abedi, M., Besic, M., Shekarchizadeh, N., Burkhard, F., Bigger-Allen, A., Adam, R., Monastyrskaya, K., Hashemi Gheinani, A.
Abstract: Background: In recent years, three-dimensional (3D) spheroid models have become increasingly popular in scientific research as they provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional two-dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays. Results: To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of the trained model using validation and test datasets shows promising results. Conclusion: SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan are available at https://github.com/FunctionalUrology/SpheroScan.
Copy rights belong to original authors. Visit the link for more info
Podcast created by Paper Player, LLC