Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.01.02.522533v1?rss=1
Authors: Rondelli, A. M., Morante-Redolat, J. M., Bankhead, P., Vernay, B., Williams, A., Carrillo-Barbera, P.
Abstract: Electron microscopy (EM) images of axons and their ensheathing myelin from both the central and peripheral nervous system are used for assessing myelin formation, degeneration (demyelination) and regeneration (remyelination). The g-ratio is the gold standard measure of assessing myelin thickness and quality, and traditionally is determined from measurements done manually from EM images - a time-consuming endeavour with limited reproducibility. These measurements have also historically neglected the innermost uncompacted myelin sheath, known as the inner myelin tongue. Nonetheless, the inner tongue has been shown to be important for myelin growth and some studies have reported that certain conditions can elicit its enlargement. Ignoring this fact may bias the standard g-ratio analysis, whereas quantifying the uncompacted myelin has the potential to provide novel insights in the myelin field. In this regard, we have developed AimSeg, a bioimage analysis tool for axon, inner tongue and myelin segmentation. Aided by machine learning classifiers trained on tissue undergoing remyelination, AimSeg can be used either as an automated workflow or as a user-assisted segmentation tool. Validation results show good performance segmenting all three fibre components, with the assisted segmentation showing the potential for further improvement with minimal user intervention. This results in a considerable reduction in time for analysis compared with manual annotation. AimSeg could also be used to build larger, high quality ground truth datasets to train novel deep learning models. Implemented in Fiji, AimSeg can use machine learning classifiers trained in ilastik. This, combined with a user-friendly interface and the ability to quantify uncompacted myelin, makes AimSeg a unique tool to assess myelin growth.
Copy rights belong to original authors. Visit the link for more info
Podcast created by Paper Player, LLC