cover of episode AB-Gen: Antibody Library Design with Generative Pre-trained Transformer and Deep Reinforcement Learning

AB-Gen: Antibody Library Design with Generative Pre-trained Transformer and Deep Reinforcement Learning

2023/3/21
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.17.533102v1?rss=1

Authors: Xu, X., Xu, T., Zhou, J., Liao, X., Zhang, R., Wang, Y., Zhang, L., Gao, X.

Abstract: Antibody leads must fulfill multiple desirable properties to be clinical candidates. Primarily due to the low throughput in the experimental procedure, the need for such multi-property optimization causes the bottleneck in preclinical antibody discovery and development, because addressing one issue usually causes another. We developed a reinforcement learning (RL) method, named AB-Gen, for antibody library design using a generative pre-trained Transformer (GPT) as the policy network of the RL agent. We showed that this model can learn the antibody space of heavy chain complementarity determining region 3 (CDRH3) and generate sequences with similar property distributions. Besides, when using HER2 as the target, the agent model of AB-Gen was able to generate novel CDRH3 sequences that fulfill multi-property constraints. 509 generated sequences were able to pass all property filters and three highly conserved residues were identified. The importance of these residues was further demonstrated by molecular dynamics simulations, which consolidated that the agent model was capable of grasping important information in this complex optimization task. Overall, the AB-Gen method is able to design novel antibody sequences with an improved success rate than the traditional propose-then-filter approach. It has the potential to be used in practical antibody design, thus empowering the antibody discovery and development process.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC