cover of episode 3DMolMS: Prediction of Tandem Mass Spectra from Three Dimensional Molecular Conformations

3DMolMS: Prediction of Tandem Mass Spectra from Three Dimensional Molecular Conformations

2023/3/16
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.15.532823v1?rss=1

Authors: Hong, Y., Li, S., Welch, C. J., Tichy, S., Ye, Y., Tang, H.

Abstract: Motivation: Tandem mass spectrometry is an essential technology for characterizing chemical compounds at high sensitivity and throughput, and is commonly adopted in many fields. However, computational methods for automated compound identification from their MS/MS spectra are still limited, especially for novel compounds that have not been previously characterized. In recent years, in silico methods were proposed to predict the MS/MS spectra of compounds, which can then be used to expand the reference spectral libraries for compound identification. However, these methods did not consider the compounds' three-dimensional (3D) conformations, and thus neglected critical structural information. Results: We present the 3D Molecular Network for Mass Spectra Prediction (3DMolMS), a deep neural network model to predict the MS/MS spectra of compounds from their 3D conformations. We evaluated the model on the experimental spectra collected in several spectral libraries. The results showed that 3DMolMS predicted the spectra with the average cosine similarity of 0.687 and 0.475 with the experimental MS/MS spectra acquired in positive and negative ion modes, respectively. Furthermore, 3DMolMS model can be generalized to the prediction of MS/MS spectra acquired by different labs on different instruments through minor fine-tuning on a small set of spectra. Finally, we demonstrate that the molecular representation learned by 3DMolMS from MS/MS spectra prediction can be adapted to enhance the prediction of chemical properties such as the elution time (ET) in the liquid chromatography and the Collisional Cross Section (CCS) measured by ion mobility spectrometry (IMS), both of which are often used to improve compound identification. Contact: [email protected] Availability: The codes of 3DMolMS are available at less than a href="https://github.com/JosieHong/3DMolMS" greater than https://github.com/JosieHong/3DMolMS less than /a greater than and the web service is at less than a href="https://spectrumprediction.gnps2.org" greater than https://spectrumprediction.gnps2.org less than /a greater than .

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC