cover of episode #447 – Cursor Team: Future of Programming with AI

#447 – Cursor Team: Future of Programming with AI

2024/10/6
logo of podcast Lex Fridman Podcast

Lex Fridman Podcast

AI Deep Dive AI Insights AI Chapters Transcript
People
A
Aman Sanger
A
Arvid Lunnemark
M
Michael Truell
S
Sualeh Asif
Topics
Cursor团队成员认为,代码编辑器是程序员构建软件的核心工具,其功能将随着AI技术的进步而不断演变。他们开发的Cursor代码编辑器,旨在充分利用AI技术提升编程效率,通过代码自动补全、代码编辑建议、代码差异比较等功能,帮助程序员更高效地编写代码。 他们还讨论了大型语言模型在编程中的应用,以及如何利用模型的规模化优势来提升代码生成和编辑的质量。此外,他们还探讨了提示工程、AI智能体、代码调试、代码安全等方面的问题,并分享了他们在模型训练、性能优化、用户体验设计等方面的经验和技术细节。 团队成员认为,AI辅助编程的未来将是程序员与AI协同工作的模式,程序员将拥有更多控制权和自主性,AI将成为程序员的强大助手,帮助他们更高效、更便捷地完成编程任务。他们相信,AI技术将彻底改变软件开发的方式,并使编程过程更加高效和有趣。 团队成员们详细介绍了Cursor的核心功能,例如Cursor Tab,它能够预测程序员接下来的操作并提供代码建议,以及根据指令生成代码。他们还讨论了如何利用各种技术,例如稀疏模型、推测性编辑、缓存优化等,来提升Cursor Tab的速度和性能。 在代码差异比较方面,他们介绍了Cursor如何通过不同的diff界面来优化用户体验,并探讨了如何利用AI技术来帮助程序员更有效地审查代码。此外,他们还讨论了如何利用大型语言模型来改进代码审查流程,例如通过智能化的方式来引导程序员关注代码中重要的部分,并减少不必要的审查工作。 团队成员们还分享了他们在模型选择、提示工程、AI智能体等方面的经验,并探讨了如何利用这些技术来提升编程效率和用户体验。他们认为,未来AI智能体将在代码调试、代码安全等方面发挥重要作用,并能够帮助程序员更高效地完成各种编程任务。 团队成员们讨论了大型语言模型在编程中的应用,以及如何利用模型的规模化优势来提升代码生成和编辑的质量。他们比较了GPT和Claude等不同模型的优缺点,并探讨了如何通过提示工程来优化模型的性能。 他们还讨论了AI智能体技术在编程中的应用前景,以及如何利用AI智能体来辅助程序员完成各种编程任务。此外,他们还探讨了代码调试、代码安全等方面的问题,并分享了他们在模型训练、性能优化、用户体验设计等方面的经验和技术细节。 团队成员们认为,AI技术将彻底改变软件开发的方式,并使编程过程更加高效和有趣。他们还探讨了如何利用AI技术来解决一些长期存在的编程难题,例如bug查找和代码验证等。 团队成员们讨论了Cursor的架构设计、技术挑战以及未来发展方向。他们介绍了Cursor是如何基于VS Code进行开发的,以及为什么选择这种方式。他们还分享了他们在系统扩展、性能优化、数据管理等方面遇到的挑战和解决方案。 他们还探讨了如何利用AI技术来提升代码编辑器的性能和用户体验,例如通过缓存优化、推测性编辑等技术来提高代码生成和编辑的速度。此外,他们还讨论了如何利用AI技术来改进代码审查流程,并探讨了AI智能体在编程中的应用前景。 团队成员们对AI辅助编程的未来充满信心,他们认为AI技术将彻底改变软件开发的方式,并使编程过程更加高效和有趣。他们还探讨了如何利用AI技术来解决一些长期存在的编程难题,例如bug查找和代码验证等。

Deep Dive

Key Insights

Why did the Cursor team decide to fork VS Code instead of writing an extension?

The decision to fork VS Code was driven by the need for more control over the programming environment as AI capabilities improve. Extensions have limitations that would lock in certain features and hinder innovation as models get better.

What are the key features that make Cursor stand out compared to GitHub Copilot?

Cursor offers faster and more intelligent features like next-action prediction and code editing across multiple lines. It also integrates AI more deeply into the editing process, making the experience more organic and efficient.

How does Cursor's tab feature work, and what is its purpose?

The tab feature in Cursor allows the model to predict the next edit or action the programmer will take, making coding faster by eliminating low-entropy actions. It aims to make the editing process feel more like having a fast colleague looking over your shoulder.

What technical challenges did the Cursor team face in making the tab feature work efficiently?

The challenges included training small, efficient models, handling long contexts, and ensuring fast performance. Techniques like speculative decoding and using sparse models were employed to improve speed and accuracy.

How does Cursor handle diffs for code changes across multiple files?

Cursor optimizes diff interfaces for different types of code changes, such as auto-complete suggestions versus larger code blocks. It aims to make the review process easier by highlighting important parts of the diff and graying out less critical changes.

Why is Cursor focusing on local models less compared to cloud-based models?

Cursor's focus on cloud-based models is due to the limitations of local models, especially on less powerful machines and the need for larger models that can't fit on a single node. Cloud-based models also allow for more sophisticated features and faster iteration.

What role does synthetic data play in improving AI models for programming?

Synthetic data helps in training models for tasks where real data is scarce or expensive. It can be used to generate training data for bug detection, improve model accuracy, and create verified data for specific tasks like solving math problems or passing coding tests.

How does Cursor envision the future of programming with AI?

Cursor sees the future of programming as a hybrid where humans remain in control, making critical decisions while AI handles the repetitive and predictive tasks. This will allow for faster iteration and more creative control over the codebase.

Chapters
The code editor is where software is built, providing structure and tools for programmers.
  • Code editors are advanced word processors for programmers.
  • They offer visual differentiation, navigation, and error checking.
  • The role of code editors will evolve with AI-assisted coding.

Shownotes Transcript

Aman Sanger, Arvid Lunnemark, Michael Truell, and Sualeh Asif are creators of Cursor, a popular code editor that specializes in AI-assisted programming. Thank you for listening ❤ Check out our sponsors: https://lexfridman.com/sponsors/ep447-sc) See below for timestamps, transcript, and to give feedback, submit questions, contact Lex, etc.

Transcript: https://lexfridman.com/cursor-team-transcript)

CONTACT LEX: Feedback – give feedback to Lex: https://lexfridman.com/survey) AMA – submit questions, videos or call-in: https://lexfridman.com/ama) Hiring – join our team: https://lexfridman.com/hiring) Other – other ways to get in touch: https://lexfridman.com/contact)

EPISODE LINKS: Cursor Website: https://cursor.com) Cursor on X: https://x.com/cursor_ai) Anysphere Website: https://anysphere.inc/) Aman’s X: https://x.com/amanrsanger) Aman’s Website: https://amansanger.com/) Arvid’s X: https://x.com/ArVID220u) Arvid’s Website: https://arvid.xyz/) Michael’s Website: https://mntruell.com/) Michael’s LinkedIn: https://bit.ly/3zIDkPN) Sualeh’s X: https://x.com/sualehasif996) Sualeh’s Website: https://sualehasif.me/)

SPONSORS: To support this podcast, check out our sponsors & get discounts: Encord: AI tooling for annotation & data management. Go to https://encord.com/lex) MasterClass: Online classes from world-class experts. Go to https://masterclass.com/lexpod) Shopify: Sell stuff online. Go to https://shopify.com/lex) NetSuite: Business management software. Go to http://netsuite.com/lex) AG1: All-in-one daily nutrition drinks. Go to https://drinkag1.com/lex)

OUTLINE: (00:00) – Introduction (09:25) – Code editor basics (11:35) – GitHub Copilot (18:53) – Cursor (25:20) – Cursor Tab (31:35) – Code diff (39:46) – ML details (45:20) – GPT vs Claude (51:54) – Prompt engineering (59:20) – AI agents (1:13:18) – Running code in background (1:17:57) – Debugging (1:23:25) – Dangerous code (1:34:35) – Branching file systems (1:37:47) – Scaling challenges (1:51:58) – Context (1:57:05) – OpenAI o1 (2:08:27) – Synthetic data (2:12:14) – RLHF vs RLAIF (2:14:01) – Fields Medal for AI (2:16:43) – Scaling laws (2:25:32) – The future of programming

PODCAST LINKS: – Podcast Website: https://lexfridman.com/podcast) – Apple Podcasts: https://apple.co/2lwqZIr) – Spotify: https://spoti.fi/2nEwCF8) – RSS: https://lexfridman.com/feed/podcast/) – Podcast Playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOdP_8GztsuKi9nrraNbKKp4) – Clips Channel: https://www.youtube.com/lexclips)