cover of episode Episode 5: Yejin Choi

Episode 5: Yejin Choi

2023/11/16
logo of podcast Unconfuse Me with Bill Gates

Unconfuse Me with Bill Gates

AI Deep Dive AI Chapters Transcript
People
B
Bill Gates
Y
Yejin Choi
Topics
Bill Gates: 本对话探讨了当前人工智能的局限性,特别是其缺乏透明度的问题。他认为,大型语言模型内部知识的编码方式不透明,我们对其运作机制的理解仍然很有限。此外,他还对人工智能技术发展速度过快以及潜在的滥用风险表示担忧,并强调了在医疗等领域谨慎使用AI的重要性。他认为,大学应该在AI研究中发挥关键作用,并对AI在蓝领机器人领域的进展缓慢感到意外。 Bill Gates还表达了对AI未来发展的期待,希望AI能够帮助人类更好地理解自身,从而促进和平共处,并能够解决气候变化等重大问题。但他同时也对AGI能否达到足够高的可靠性以解决人类面临的重大问题表示怀疑。最后,他还谈到了商业应用对AI人才的吸引力可能导致学术界人才流失的问题。 Yejin Choi: Yejin Choi在对话中主要阐述了大型语言模型的局限性及其未来发展方向。她指出,大型语言模型以不透明的方式获取知识,表现出能力和错误并存的特性,人们对提示工程的结果反应存在分歧。她认为,未来模型规模的扩大是否会带来能力的显著提升,目前尚不清楚,并指出随着模型能力的提升,评估其能力将变得越来越困难。 她还分析了大型语言模型在数学推理方面表现不佳的原因,认为科学界对大型语言模型在推理方面的局限性存在不同观点,一部分人认为可以通过改进解决,另一部分人认为存在根本性限制。她认为,未来的AI架构可能需要更强的自我理解能力,能够更有效地重用知识,并指出与人类相比,GPT-4拥有巨大的工作记忆,这可能是其学习的瓶颈。 此外,她还讨论了中等规模模型在特定任务上的优势,以及高质量数据对于AI有效学习的重要性。她认为,当前AI学习方式过于依赖蛮力,缺乏透明度,需要更有效的解决方案,并主张开放中等规模的AI模型,更有利于学术界的研究和发展。她还表达了对AI技术发展速度过快以及潜在的滥用风险的担忧,并强调了需要更多努力来理解AI的局限性和能力,并开发相应的策略和技术来控制其对人类的影响。最后,她还谈到了对AI研究过于关注“规模至上”和提示工程的担忧,以及对AI未来能够帮助人类更好地理解自身,从而促进和平共处的期待。

Deep Dive

Chapters
This chapter explores the current state of AI, highlighting its opaque nature and the challenges in understanding how it acquires knowledge. It discusses the surprising successes and failures of large language models (LLMs) and the debate surrounding prompt engineering.
  • Current AI is opaque and its inner workings are not well understood.
  • LLMs acquire knowledge in an opaque way, leading to surprising successes and failures.
  • Prompt engineering is a black art, with varying interpretations of success and failure.
  • There is a debate about whether scaling up models will lead to dramatic improvements or just modest ones.
  • Symbolic reasoning and factual knowledge can be brittle in current AI models.

Shownotes Transcript

Few people are better at explaining the science of artificial intelligence than Yejin Choi. She’s a computer science professor at the University of Washington, senior resource manager at the Allen Institute for AI, and the recipient of a MacArthur Fellowship. I thought her recent TED talk) was terrific, and I was thrilled to talk to her about how you train a large language model, why it’s so hard for robots to pick tools out of a box, and why universities must play a key role in the future of AI research.

Show notes:

- Yejin’s TED talk: https://www.ted.com/talks/yejin_choi_why_ai_is_incredibly_smart_and_shockingly_stupid?language=en)

- Moravec’s paradox: https://en.wikipedia.org/wiki/Moravec%27s_paradox)

- Virtual Insanity by Jamiroquai: https://open.spotify.com/track/24SUWisv2lYQiB3bVpE1sn?si=b290674d2791460d)