cover of episode Why Your GPUs are underutilised for AI - CentML CEO Explains

Why Your GPUs are underutilised for AI - CentML CEO Explains

2024/11/13
logo of podcast Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

AI Deep Dive AI Chapters Transcript
People
G
Gennady Pekhimenko
Topics
Gennady Pekhimenko 认为,AI 系统的优化和企业应用是当前 AI 领域的关键问题。他指出,许多企业在使用 GPU 进行机器学习工作负载时,利用率很低,仅达到 10% 左右。这主要是因为缺乏有效的系统优化策略。他介绍了 CentML 公司致力于优化机器学习工作负载,目标是提高易用性、降低成本和提高效率。他还比较了开源模型和闭源模型的优缺点,认为开源模型正在快速发展,并逐渐缩小与闭源模型的差距,这有利于社会和 AI 领域的发展。开源模型的普及降低了企业采用 AI 技术的门槛,并允许企业保护自身数据,构建自己的知识产权。在谈到技术领导力时,他认为 CEO 应具备足够的专业技术知识,能够理解团队的能力和构建内容,并能够与客户和投资者有效沟通。他还强调了团队建设的重要性,认为团队建设是一个复杂的工程问题,需要找到有效的管理方法,并建立可扩展的团队。他认为 NVIDIA 的扁平化组织结构使其运作更接近初创公司,效率更高。在讨论模型架构时,他认为目前没有明显的模型架构能够替代基于 Transformer 的注意力机制,未来的发展重点是基于现有基础模型构建更复杂的系统。他还讨论了 AI 系统的非确定性问题,以及如何提高 AI 系统的可靠性和可解释性。他认为,AI 系统的优化需要考虑多个因素,例如成本、性能、功耗和散热等,并需要找到最佳的权衡点。他还介绍了 CentML 公司在优化 AI 系统方面的一些技术成果,例如同时进行训练和推理等。在谈到企业采用 AI 时,他认为企业普遍认识到 AI 的价值,但面临着如何选择合适的应用场景和实施方案的挑战。他认为,CentML 公司能够帮助企业克服 AI 系统构建和部署的挑战,并降低成本。他还讨论了与云服务提供商的合作关系,以及如何优化多云环境下的 AI 系统。最后,他还谈到了 MLPerf 基准测试的重要性,以及如何提高基准测试的公平性和可靠性。 Gennady Pekhimenko 还深入探讨了 AI 系统的推理能力和局限性,以及如何提高 AI 系统的可靠性和可解释性。他认为,现代 AI 模型缺乏复杂的推理能力和与现实世界的连接能力,这限制了其发展。他认为,未来的 AI 系统需要具备更强的推理能力、更强的与现实世界的连接能力,以及更强的鲁棒性和可解释性。他还讨论了 AI 系统的计算能力和局限性,以及如何构建图灵完备的 AI 系统。他认为,当前 AI 模型的计算效率非常低,需要改进。他还讨论了 AI 辅助软件开发的挑战,以及如何提高软件开发效率。他认为,AI 可以帮助软件工程师提高效率,但不能完全取代其设计能力。他还讨论了企业采用 AI 的挑战,以及如何提高企业采用 AI 的效率。他认为,企业需要了解模型部署的复杂性,并选择合适的工具和方法。他还讨论了与云服务提供商的合作关系,以及如何优化多云环境下的 AI 系统。最后,他还谈到了 MLPerf 基准测试的重要性,以及如何提高基准测试的公平性和可靠性。

Deep Dive

Chapters
Discussions on NVIDIA's technical leadership, corporate structure, and the potential for other hardware providers to challenge their dominance.
  • NVIDIA's success is attributed to their engineering culture and early investment in AI technology.
  • The company's organizational structure allows them to operate more like a startup despite their scale.
  • While NVIDIA is currently dominant, there is potential for other hardware providers to emerge.

Shownotes Transcript

Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this sponsored episode to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic research and industrial applications. Learn about "dark silicon," GPU utilization challenges in ML workloads, and how modern enterprises can optimize their AI infrastructure. The conversation explores why some companies achieve only 10% GPU efficiency and practical solutions for improving AI system performance. A must-watch for anyone interested in the technical foundations of enterprise AI and hardware optimization.

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Cheaper, faster, no commitments, pay as you go, scale massively, simple to setup. Check it out!

https://centml.ai/pricing/

SPONSOR MESSAGES:

MLST is also sponsored by Tufa AI Labs - https://tufalabs.ai/

They are hiring cracked ML engineers/researchers to work on ARC and build AGI!

SHOWNOTES (diarised transcript, TOC, references, summary, best quotes etc)

https://www.dropbox.com/scl/fi/w9kbpso7fawtm286kkp6j/Gennady.pdf?rlkey=aqjqmncx3kjnatk2il1gbgknk&st=2a9mccj8&dl=0

TOC:

  1. AI Strategy and Leadership

[00:00:00] 1.1 Technical Leadership and Corporate Structure

[00:09:55] 1.2 Open Source vs Proprietary AI Models

[00:16:04] 1.3 Hardware and System Architecture Challenges

[00:23:37] 1.4 Enterprise AI Implementation and Optimization

[00:35:30] 1.5 AI Reasoning Capabilities and Limitations

  1. AI System Development

[00:38:45] 2.1 Computational and Cognitive Limitations of AI Systems

[00:42:40] 2.2 Human-LLM Communication Adaptation and Patterns

[00:46:18] 2.3 AI-Assisted Software Development Challenges

[00:47:55] 2.4 Future of Software Engineering Careers in AI Era

[00:49:49] 2.5 Enterprise AI Adoption Challenges and Implementation

  1. ML Infrastructure Optimization

[00:54:41] 3.1 MLOps Evolution and Platform Centralization

[00:55:43] 3.2 Hardware Optimization and Performance Constraints

[01:05:24] 3.3 ML Compiler Optimization and Python Performance

[01:15:57] 3.4 Enterprise ML Deployment and Cloud Provider Partnerships

  1. Distributed AI Architecture

[01:27:05] 4.1 Multi-Cloud ML Infrastructure and Optimization

[01:29:45] 4.2 AI Agent Systems and Production Readiness

[01:32:00] 4.3 RAG Implementation and Fine-Tuning Considerations

[01:33:45] 4.4 Distributed AI Systems Architecture and Ray Framework

  1. AI Industry Standards and Research

[01:37:55] 5.1 Origins and Evolution of MLPerf Benchmarking

[01:43:15] 5.2 MLPerf Methodology and Industry Impact

[01:50:17] 5.3 Academic Research vs Industry Implementation in AI

[01:58:59] 5.4 AI Research History and Safety Concerns