cover of episode #68 DR. WALID SABA 2.0 - Natural Language Understanding [UNPLUGGED]

#68 DR. WALID SABA 2.0 - Natural Language Understanding [UNPLUGGED]

2022/3/7
logo of podcast Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

Frequently requested episodes will be transcribed first

Shownotes Transcript

Patreon: https://www.patreon.com/mlst

Discord: https://discord.gg/HNnAwSduud

YT version: https://youtu.be/pMtk-iUaEuQ

Dr. Walid Saba is an old-school polymath. He has a background in cognitive  psychology, linguistics, philosophy, computer science and logic and he’s is now a Senior Scientist at Sorcero.

Walid is perhaps the most outspoken critic of BERTOLOGY, which is to say trying to solve the problem of natural language understanding with application of large statistical language models. Walid thinks this approach is cursed to failure because it’s analogous to memorising infinity with a large hashtable. Walid thinks that the various appeals to infinity by some deep learning researchers are risible.

[00:00:00] MLST Housekeeping

[00:08:03] Dr. Walid Saba Intro

[00:11:56] AI Cannot Ignore Symbolic Logic, and Here’s Why

[00:23:39] Main show - Proposition: Statistical learning doesn't work

[01:04:44] Discovering a sorting algorithm bottom-up is hard

[01:17:36] The axioms of nature (universal cognitive templates)

[01:31:06] MLPs are locality sensitive hashing tables

References;

The Missing Text Phenomenon, Again: the case of Compound Nominals

https://ontologik.medium.com/the-missing-text-phenomenon-again-the-case-of-compound-nominals-abb6ece3e205

A Spline Theory of Deep Networks

https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf

The Defeat of the Winograd Schema Challenge

https://arxiv.org/pdf/2201.02387.pdf

Impact of Pretraining Term Frequencies on Few-Shot Reasoning

https://twitter.com/yasaman_razeghi/status/1495112604854882304?s=21

https://arxiv.org/abs/2202.07206

AI Cannot Ignore Symbolic Logic, and Here’s Why

https://medium.com/ontologik/ai-cannot-ignore-symbolic-logic-and-heres-why-1f896713525b

Learnability can be undecidable

http://gtts.ehu.es/German/Docencia/1819/AC/extras/s42256-018-0002-3.pdf

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

https://arxiv.org/pdf/2112.11446.pdf

DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning

https://arxiv.org/abs/2006.08381

On the Measure of Intelligence [Chollet]

https://arxiv.org/abs/1911.01547

A Formal Theory of Commonsense Psychology: How People Think People Think

https://www.amazon.co.uk/Formal-Theory-Commonsense-Psychology-People/dp/1107151007

Continuum hypothesis

https://en.wikipedia.org/wiki/Continuum_hypothesis

Gödel numbering + completness theorems

https://en.wikipedia.org/wiki/G%C3%B6del_numbering

https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

Concepts: Where Cognitive Science Went Wrong [Jerry A. Fodor]

https://oxford.universitypressscholarship.com/view/10.1093/0198236360.001.0001/acprof-9780198236368