cover of episode Nvidia Part II: The Machine Learning Company (2006-2022)

Nvidia Part II: The Machine Learning Company (2006-2022)

2022/4/20
logo of podcast Acquired

Acquired

AI Deep Dive AI Chapters Transcript
People
B
Ben Gillibrand
D
David Rosenthal
Topics
Ben Gillibrand:NVIDIA 通过构建强大的GPU架构、硬件、软件和服务,成功模拟现实世界,其应用已从游戏领域扩展到数字孪生、科学计算、药物研发和气候变化预测等多个领域,其改进之大令人难以置信。 深度学习的兴起是 NVIDIA 取得成功的关键因素,AlexNet 的出现以及其在 NVIDIA GPU 上的运行,标志着人工智能领域的重大突破。深度学习推动了互联网价值的转移,NVIDIA 通过提供底层硬件和软件,在这一过程中占据了关键地位。数据中心业务已成为 NVIDIA 重要的收入来源,与游戏业务规模相当,未来发展方向包括机器人、自动驾驶和元宇宙等领域。 David Rosenthal:NVIDIA 在早期克服了市场竞争和英特尔带来的挑战,通过快速的产品迭代、自主研发的驱动程序以及可编程着色器技术,在图形卡市场取得了成功。自主研发驱动程序提升用户体验,并培养了内部的软件开发团队。可编程着色器技术首次建立了与开发者的直接关系,为其特定硬件开发带来了优势。Jensen Huang 致力于将 NVIDIA 推向通用计算领域,这是一个长期且具有挑战性的目标,押注CUDA,但当时市场不明朗,投资回报存在不确定性。CUDA 的市场在当时并不明确,主要目标是科学计算领域。CUDA 是 NVIDIA 的计算统一设备架构,是一个免费但专有的平台,只能在 NVIDIA 硬件上运行,商业模式类似于苹果,通过提供完整的开发者生态系统来销售其硬件。深度学习的广泛应用使得 NVIDIA 成为关键的平台型公司,数据中心业务的快速增长,以及推出数据处理单元(DPU),完善了其CPU、GPU和DPU的三足鼎立的计算架构。 Jensen Huang:NVIDIA 通过持续迭代GPU加速库、系统和应用,并拓展应用领域,构建了完整的CUDA生态系统。构建CUDA是一个全新的编程模型,需要创建编译器团队、SDK、库以及开发者生态系统。NVIDIA Omniverse 是一个企业级元宇宙平台,用于模拟和测试各种应用场景。

Deep Dive

Chapters
By 2006, NVIDIA had established itself in the gaming market. However, CEO Jensen Huang had a bigger vision. He saw the potential of GPUs for general-purpose computing and began investing heavily in CUDA, a platform for parallel processing. Despite skepticism from Wall Street and the market, Huang remained committed to this vision.
  • NVIDIA dominated the graphics card market with 6-month chip cycles and programmable shaders.
  • They focused on gaming but a Stanford researcher's email hinted at the potential of GPUs for scientific computing.
  • Jensen Huang bet big on CUDA, a new programming model for parallel computing, despite an unclear market.

Shownotes Transcript

By 2012, NVIDIA was on a decade-long road to nowhere. Or so most rational observers of the company thought. CEO Jensen Huang was plowing all the cash from the company’s gaming business into building a highly speculative platform with few clear use cases and no obviously large market opportunity. And then... a miracle happened. A miracle that led not only to Nvidia becoming the 8th largest market cap company in the world, but also nearly every internet and technology innovation that’s happened in the decade since. Machines learned how to learn. And they learned it... on Nvidia.

If you want more Acquired, you can follow our newly public LP Show feed here) in the podcast player of your choice (including Spotify!).

**Sponsors:**Statsig: https://bit.ly/acquiredstatsig24)Vanta: https://bit.ly/acquiredvanta)Crusoe: https://bit.ly/acquiredcrusoe)

Links:

Carve Outs:

‍Note: Acquired hosts and guests may hold assets discussed in this episode. This podcast is not investment advice, and is intended for informational and entertainment purposes only. You should do your own research and make your own independent decisions when considering any financial transactions.