cover of episode Structure-informed Language Models Are Protein Designers

Structure-informed Language Models Are Protein Designers

2023/2/3
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.02.03.526917v1?rss=1

Authors: Zheng, Z., Deng, Y., Xue, D., Zhou, Y., YE, F., Gu, Q.

Abstract: This paper demonstrates that language models are strong structure-based protein designers. We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs), that have learned massive sequential evolutionary knowledge from the universe of natural protein sequences, to acquire an immediate capability to design preferable protein sequences for given folds. We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness. During inference, iterative refinement is performed to effectively optimize the generated protein sequences. Experiments show that our approach outperforms the state-of-the-art methods by a large margin, leading to 4% to 12% accuracy gains in sequence recovery (e.g., 55.65% and 56.63% on CATH 4.2 and 4.3 single-chain benchmarks, and greater than 60% when designing protein complexes). We provide extensive and in-depth analyses, which verify that LM-Design can (1) indeed leverage both structural and sequential knowledge to accurately handle structurally non-deterministic regions, (2) benefit from scaling data and model size, and (3) generalize to other proteins (e.g., antibodies and de novo proteins).

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC