cover of episode Dimension-agnostic and granularity-based spatially variable gene identification

Dimension-agnostic and granularity-based spatially variable gene identification

2023/3/24
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Frequently requested episodes will be transcribed first

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.21.533713v1?rss=1

Authors: Wang, J., Li, J., Kramer, S. T., Su, L., Chang, Y., Xu, C., Ma, Q., Xu, D.

Abstract: Identifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a spatial granularity-guided and non-parametric model to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This new method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC