cover of episode Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data

Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data

2023/2/7
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.02.06.527318v1?rss=1

Authors: Aubin, R. G., Montelongo, J., Hu, R., Camara, P. G.

Abstract: Single-cell RNA-sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes like cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in functionality and accuracy with respect to current deconvolution methods. Using ConDecon, we discover the implication of neurodegenerative microglial inflammatory pathways in the mesenchymal transformation of ependymoma, recapitulate spatial patterns of cell differentiation during zebrafish embryogenesis, and make temporal inferences from bulk ATAC-seq data. Overall, ConDecon significantly enhances our understanding of dynamic cellular processes within bulk tissue samples.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC