cover of episode BEERS2: RNA-Seq simulation through high fidelity in silico modeling

BEERS2: RNA-Seq simulation through high fidelity in silico modeling

2023/4/24
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Frequently requested episodes will be transcribed first

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.04.21.537847v1?rss=1

Authors: Brooks, T. G., Lahens, N. F., Mrcela, A., Sarantapoulou, D., Nayak, S., Naik, A., Sengupta, S., Choi, P. S., Grant, G. R.

Abstract: Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC