cover of episode Adversarial Attacks on Protein Language Models

Adversarial Attacks on Protein Language Models

2022/10/25
logo of podcast PaperPlayer biorxiv bioinformatics

PaperPlayer biorxiv bioinformatics

Frequently requested episodes will be transcribed first

Shownotes Transcript

Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.10.24.513465v1?rss=1

Authors: Carbone, G., Cuturello, F., Bortolussi, L., Cazzaniga, A.

Abstract: Deep Learning models for protein structure prediction, such as AlphaFold2, leverage Transformer architectures and their attention mechanism to capture structural and functional properties of amino acid sequences. Despite the high accuracy of predictions, biologically insignificant perturbations of the input sequences, or even single point mutations, can lead to substantially different 3d structures. On the other hand, protein language models are often insensitive to biologically relevant mutations that induce misfolding or dysfunction (e.g. missense mutations). Precisely, predictions of the 3d coordinates do not reveal the structure-disruptive effect of these mutations. Therefore, there is an evident inconsistency between the biological importance of mutations and the resulting change in structural prediction. Inspired by this problem, we introduce the concept of adversarial perturbation of protein sequences in continuous embedding spaces of protein language models. Our method relies on attention scores to detect the most vulnerable amino acid positions in the input sequences. Adversarial mutations are biologically diverse from their references and are able to significantly alter the resulting 3d structures.

Copy rights belong to original authors. Visit the link for more info

Podcast created by Paper Player, LLC