AI产品其实并不神奇,任何产品的商业价值都在于其对人类的价值。 随着ChatGPT火热,越来越多的产品经理也在考虑为自己的产品添加AI功能,但是事实上并没有那么容易。作为产品经理我经常能收集到各种AI产品的Idea,有些甚至过于科幻,每当我们迫不及待的去实施的时候,结果总是状况百出。 该如何选择更好的技术方案或许是算法工程师关注的领域,但对AI产品来说,如何管理好AI产品需求也是一个重要挑战,这也是AI产品经理的使命所在。 这两年的实践中,我先后做了“Get写作”和“互链文档”两款智能写作产品,前者是针对新媒体写作场景,后者是针对于日常笔记场景。不管是哪个场景,摆在我们面前最大的问题并不是“我们可以用AI打造一款怎样与众不同的产品?”而是:“我们该怎么去定义智能体验?” 一、如何定义智能体验? 学术界对于AI智能已经有了一些定义,人们期望AI像人一样,能合理地思考和行动(出自《人工智能——一种现代化的方法》),如下图。 从用户体验角度来看, AI产品的智能体现就是能合理地做出行为决策,换句话说就是“机器能根据输入条件作出合理判断并输出结果”,我们暂且称之为 “自动化决策”。例如,Siri能够合理地回答你问题,虽然有些回答听起来很搞笑,但只要输出的结果让人觉得合理,就依然会被人接受,如下图。 AI的输出是否合理,这个取决于人的主观评判。这也是数据标注工作所做的意义所在——尽可能通过标注让模型更能贴近人的预期。 当我们把一连串“自动决策”串联在一起了后,就变成了一个自动化的业务流程,帮助人类省心省力地完成业务目标,这也是AI产品的价值体现。 例如,扫地机器人通过良好的寻址算法,趁主人不在家的时候扫遍房间的每一个角落,让人觉得省心又省力。但如果在扫地过程中不断需要主人来处理各种状况,如卷了电线和异物,就算这些状况和算法无关,那也会让人觉得不智能。 因此,AI产品的体验效果并不一定取决于算法,而是在产品使用过程中是否能流畅地达到用户预期的目标或价值。 综上,最终决定产品的智能体验感的核心还是在于经过AI的一系列自动决策后,能更好地满足业务场景中的需求。 二、AI产品需求的挖掘与管理 根据前面的分析,所谓的AI产品需求管理,首先要挖掘那些能够自动化决策的需求点,其次当这些需求点串联在一起的时候,让产品整体能达到较好的使用体验。前者和算法有关,后者不仅仅局限于算法,如下图所示: 需要强调的是:不管技术手段如何变,产品经理始终都需要以实现商业价值为目标和用户体验为中心来选取具有可行性的技术手段和方案。但反观目前市面上的一些AI产品经理的资料,通篇照搬AI技术的概念,而忽视了产品本质,这是一种舍本求末的表现。 在AI产品需求分析与整理的过程中,我们总结了以下四个关键步骤:1. 收集场景案例;2.绘制决策流程;3. 筛选可行性用例;4. 制定AI产品路线图。
1、收集场景案例 我们要教会AI决策,我们就必须弄清楚人是怎样做决策的。 我们应当以实现业务价值为最终目标,专注分析业务场景中的问题。在项目早期,收集实际场景中的业务案例显得尤为重要。 我们可以将收集的案例整理成一个个表格或者卡片,包含要素有:场景概述、业务目标、业务流程、关键决策点、业务痛点、过往案例:
** 1. 场景概述:**用最简洁的一句话说明该场景中的业务要点“谁-做什么-为什么做”,这类似于敏捷开发中的“用户故事”; **2. 业务目标:**用于明确业务要达成的最终结果,并为自动决策获得一个可衡量标准。我们可以寻找业务中一些量化的KPI,这不仅是对人的考核也是对AI的考核; **3. 主要业务流程:**目的是为了弄清楚当前的系统运行情况:在原有的人工的业务流程是怎么样的?现有的业务流程中有哪些优点或者缺点? **4. 关键决策点:**找到关键逻辑决策点,在流程中人是如何做决策的?判断的效率怎么样?判断规则是什么?要输出怎样的结果? ** 5. 业务痛点:**找到产品能够发挥价值的地方,有哪些痛点?有哪些抱怨? **6. 过往的成功与失败的案例:**主要是为了弄清楚一些真实情况。能否举出多个成功的案例?能否举出多个失败的案例?失败的原因是什么?会怎么样处理? 在我接触过的项目中,一些业务方对表格中的问题会表现得一脸懵逼,原因很简单,自己都没有弄清楚自己业务的SOP(标准作业程序)就期望AI来帮他们解决问题。这种情况,还是需要由人类先摸索出有价值的SOP,因为人做不好的,AI也很难做好。 如下图,CRM客户挖掘的业务场景案例:每天,电话客服人员需要拨打大量的电话,找到对产品感兴趣的客户,以便于销售人员跟进。对于客服人员来说,工作量大而且重复,容易让人烦躁。 通过这样的收集和整理,让我们对要解决的问题和场景有一个直观的感知,但随着调查的深入我们还可能会发现新的问题。为了不遗漏有价值的信息,这个阶段我们收集的案例,应该有更多发散性。 2、绘制决策流程图 通过业务案例的收集,我们可以梳理出一个业务流程图,我们可以使用“UML活动图”来绘制,并且我们还要重点标识出决策的判断点。如下图: 如图所示,起点是挑选客户资料,结束点是标记出有意愿的A类的客户。 为了更加明确,我们将理想的关键流程(Happy path)放到主轴上面,代表决策的菱形节点放在两边,我们可以一目了然,看到那些通向“幸福 Happy”的关键决策。 先不考虑任何实现手段,我们需要先弄清楚,每一个决策点的输入、输出和规则是什么。我们可将这些决策点整理成一份“决策用例清单”,然后再综合考虑是否合适AI自动化决策: 用例(Use Case)是UML中术语,一个用例代表一个完整的系统功能单元,但不考虑该系统的内部实现细节。 另外,我们还可以将此清单直观地整理成UML用例图,这个系统参与者有三个:客服,客户,AI。
3、筛选可行性用例 根据上面的用例,AI该如何与人类一起工作呢? 并不是所有“决策”都是适合机器做,机器做决策的特点是效率高速度快,但应变性弱并且依赖训练数据,需要保留一定的容错性。 人类做决策的特点是灵活性高,但是效率慢、主观性强等问题。我们可以用“场景决策矩阵”判断,如下图: 按照场景和决策两个维度: * 场景分为“常规场景”和“细腻性场景”:常规场景中可以收集的数据充足,细腻场景对数据细节要求较高,可以收集训练数据量较少,AI的出错率较高,需要有人类优化和把控结果。 * 决策分为“信息性决策”和“行动性决策”:信息性决策提供的是信息建议并不会直接影响项目执行,行动性决策是直接影响结果的执行命令,例如,智能驾驶。如果AI执行行动性决策任务可能会导致严重项目风险。 我们将这两个维度分成四个象限: 1. 常规性场景+信息性决策:对细节要求不高,学习案例多,AI学习效果较好,AI只提供信息建议,辅助人类决策,出错的风险很低,特别适合AI来做; 2. 细腻性场景+信息性决策:对细节要求极高,学习案例少,AI做出正确判断有难度,AI提供信息建议,由人类为主导AI辅助做决策,出错风险低,早期适合人类为主导,随着模型调优人类可以逐步放权; 3. 常规性场景+行动性决策:对细节要求不高,学习案例多,AI学习效果较好,AI代替人类做行动决策,出错有一定风险性,早期适合人类为主导,随着模型调优人类可以逐步放权; 4. 细腻性场景+行动性决策:对细节要求极高,学习案例少,AI做出正确判断有难度,让AI代替人类做行动决策有很大风险,建议人来做。
我们可以将上面的决策用例做一个基础的判定:排布在场景决策矩阵如下:
通过这样的分类方法,我们能很清楚的知道机器和人类应该怎样分工,案例中大部分决策用例都可以交给机器,但“询问进一步沟通的意图”是很关键一步,如果全权交给机器,效果将大打折扣。这样,我们就有了一张人与AI的分工图:
这时我们有了两条思路: 第一条思路,如果AI效果好的话,那么全权负责整条链路,让人在最后一步把关,这样的好处是效率高; 第二条思路,AI作为一个辅助工具,帮助客服自动化筛选客户信息,做好通话情况记录和打分,一定程度有效提升客服效率,而且结果也可控。 到底哪个方案好呢? 一方面需要根据实际的业务需求判断, 例如,针对高端人群的产品,获取客资成本高,对于这些高端客户来说冷冰冰的机器人电话显得没有诚意,但是普通话不标准的销售人员也可能让人觉得是山寨推销。 另外一方面,我们需要将需求对应到不同的技术模块上,因为算法产品有一定不确定性,贸然使用不成熟的技术,也承担着巨大风险。 作为产品经理,我们应积极与数据科学家和工程师沟通,或许他们也有更好的建议,对于产品经理来说,沟通永远都是第一要务。
4、制定AI产品路线图 AI和人一样,需要一个成长过程,这个过程中需要不断的积累数据和调整算法策略。一个好的AI产品路线图,需要给我们的产品规划一个学徒期,从简单的决策开始,再逐渐演变为更复杂的决策。 我们可以根据前面的算法模块的拆解,挑选出哪些需要优先做的模块,我们可以从影响、努力、风险三个维度考虑。如下图: 我们优先选性价比高和风险较低的模块,如果是一些通用性的算法模块也可以考虑使用大厂提供的服务。这样保证产品功能完整性的同时,也降低了不确定性带来的问题。 AI产品相比传统产品更需要大量数据,我们需要提前做好数据埋点和反馈机制,确保产品上线后,能够收集足够的数据,充分了解各种决策及其完整上下文。这样便于算法工程师,持续的优化模型和算法。 另外,为了更早的发现真实场景中的问题, 我们需要让用户尽早地使用我们的产品,但是由于产品还在学徒期,功能不完善、体验不确定,并不适宜大规模推广。我们可以考虑通过邀请制,让愿意尝鲜的用户先体验,这些用户往往比普通用户包容性更强也更加积极,愿意提更多的意见和想法。 基于上面的几点考虑,我将路线图中的需求分成应用层需求和算法层需求两类。 应用层主要是指直接与用户打交道的需求,这部分是偏传统的软件开发内容。细分下去包含,决定产品使用体验的功能性需求;和运营节奏息息相关的增长性需求,如邀请、裂变、积分等;还有用户看不到的但能让产品和服务变得更好的支持性需求,如产品后台、数据埋点与数据统计平台等。 算法层是指与自动化决策息息相关的需求。应用层与算法层通过算法服务提供API打交道,这些API需要根据应用层场景进行调整和优化。但算法只有API是不够的,还需要一些支持性的模块,例如网络爬虫和一些基础算法模型,另外应用层真实的数据反馈对于算法层也非常重要。 在产品早期,我们需要迅速验证我们的业务方向和价值。所以,我们首先需要为用户做好基础场景的建设,并为AI的崭露头角预留出更多的空间,于此同时我们也需要做好算法层的技术建设,然后再逐步引入种子用户不断优化产品。而中期,我们需要提供更多的业务数据反哺算法,形成数据飞轮,做到人无我有的极致体验。最终,我们整理出我们的AI产品路线,让我们的AI产品能够从学徒期慢慢走向成熟。 三、结语 在这两年的AI产品实践中,我在产品经理、设计师、工程师之间来回切换角色,不仅仅是为了打造心中所想的产品,也是为了探寻心中的一个答案:“AI时代,产品经理应该如何做产品”。 过去一年,可谓一路狂奔,将原本写产品需求的时间放到了写代码上,不知不觉中,我的github瓦片图也快要被绿色占满,但值得庆幸的是,通过亲手打造的产品,团队也成功拿到了融资。 AI产品其实并不神奇,任何产品的商业价值都在于其对人类的价值。只是不同的技术方案需要考虑的侧重点会有所不同。对于产品经理来说,科技在进步,思维方式需要迭代更新,但也不能全部舍弃,用“进化”这个词来形容我们AI时代的产品经理可能更为贴切。 如果您喜欢我的文章请继续关注我,我将继续更新我在AI产品领域的一些总结和思考。也欢迎一些志同道合的小伙伴,共同探讨,一同进化。