NEWS ON )03/11 Scientists Discover Workings of Double-Layer Immune Response In Plant 科学家重要新发现:植物双层免疫系统可协同御敌 Welcome to this edition of ShanghaiLive, I'm Chen Xuan / ICS Anchor. 欢迎收听今天的《直播上海》,我是陈璇 / ICS 主播 Scientists from a Shanghai institute under the Chinese Academy of Sciences today published a study in the leading journal "Nature", revealing how plants defend against diseases with two layers of immune 【免疫】responses, and how the two mechanisms 【机制】 enhance each other. The findings can shed light upon【揭示】 cultivating stronger crops in the future. Here's Sun Siqi with the details. 《自然》(Nature)发表了中国科学院上海研究所研究员辛秀芳团队的研究论文,该研究揭示了植物两大免疫系统在功能上协作及交互作用的机制,研究结果为未来培育强力作物提供了新的视角)。请听记者孙思琦带来的报道。 Like the game Plants vs. Zombies, inside a plant its cells are silently fending off 【抵御】attacks from bacteria【细菌】 and fungus【真菌】. 就像在游戏《植物大战僵尸》里那样,植物细胞也静静地抵抗着细菌和真菌。 It's been known that most plants have two layers of defense known as PTI and ETI. When bacteria attack, PTI first comes into action after the plant recognizes the pathogen's 【病原体】 molecular 【分子】 pattern. ETI is later triggered by the plant's receptor proteins that read the toxic proteins the pathogen generates. The two responses were previously thought to act independently. 我们知道,大多数植物拥有两层免疫系统:PTI和ETI。细菌来袭时,植物识别到病原体的分子模式, PTI随即发生反应。接着,植物的受体蛋白读取由病原体产生的毒性蛋白,并触发ETI反应。在先前的研究中,这两种反应均被认为是独立进行的。 Professor Xin Xiufang and her team discovered that in an arabidopsis【拟南芥】 plant, a genus 【属】 that includes cabbage and mustard, layer one is able to strengthen the action of layer two, which then increases the level of signaling components that trigger layer one. In other words, they're dependent on each other to achieve the strongest defense. 辛秀芳教授课题组发现在拟南芥属植物(如卷心菜和芥菜)中,第一层免疫(PTI)能够强化第二层免疫(ETI)的免疫作用,而ETI也能够上调PTI中一些重要的信号成分转录与蛋白水平。也就是说,二者相互依存,共同构成了最强防御。 Interviewee: Professor Xin Xiufang, Chinese Academy of Sciences Shanghai Branch 辛秀芳 教授 / 中国科学院上海研究所 “PTI comes into action first, but it can be inhibited 【抑制】 by toxic proteins from the bacteria. Then the second layer, the ETI, is triggered when plant cells recognize the toxic proteins. In our research, we found that as PTI activity peaks and wanes【衰退】, ETI kicks in 【进入】 and pushes PTI back to its peak. The two layers act like in a circle, enhancing each other.” “PTI最先反应,但可能会被细菌中的毒性蛋白阻止。而第二道防御,即ETI在植物细胞识别到毒性蛋白时开始反应。我们的研究发现,在PTI免疫进程中,ETI也会加入其中,并在PTI免疫效果减退时为它助力。两道防御形成了一个循环,彼此相互增强。” Further research is required to determine whether the same mechanism exists in other plant species. If verified, scientists may be able to develop crop strains 【菌株;种】 that are more resistant to diseases. 为了确定在其他种类的植物中是否也存在同样的机制,需要进行更深入的研究。如果能够确认这种机制是广泛存在的,科学家们便有可能培育出更具抗病性的植物。 Most existing disease-resistant crops were developed by enhancing their ETI. Now, scientists may have more strategies to increase plant resistance -- there're more genes that we can target to enhance both PTI and ETI levels. 目前的大多数抗病性作物是通过提高ETI水平培育出来的。而现在,由于获得了更多用以提高PTI和ETI水平的目标基因组,科学家们也有更多办法来提升植物抗病性。 This can be achieved through either cross-breeding 【杂交】 or genetic engineering【基因工程】. The findings may contribute to food supply safety as climate change has been shown to lead to wider dispersal 【分散】of some plant sickening pathogens. 通过杂交或基因工程,能够获得更多植物基因组数据。天气变化会扩散植物病原体的传播,而本研究的结果有利于食物供应安全。 #热词加油站 shed light upon【揭示】 fend off 【抵御】 bacteria【细菌】 fungus【真菌】 inhibited 【抑制】 kicks in 【进入,破门而入】 wanes【衰退】 dispersal 【分散】 genetic engineering【基因工程】 cross-breeding 【杂交】